Experimental optimization Lecture 2: A/B testing I: Overview

David Sweet

Review Expectation

- Game:
 - Flip a coin
 - Heads: You win \$1
 - Tails: You lose \$1
- What is the expectation?
- What is expectation?

Review **Expectation, sample mean**

- RV is X
- *Expectation* of one play of the game:
 - $E[X] = P\{H\} \times \$1 + P\{T\} \times (-\$1) = \$0$
- Expectation is unobservable: One play of the game never returns \$0.
- Estimate expectation by the sample mean over N plays:

 $E[X] \approx \sum x_i/N$ ll

What other unobservable quantities have you estimated?

Workflow / pipeline Zoom in

Aside: Simulators

- Book uses simulator as stand-in for real system
 - Python function s.t. business_metric = f()
- For class: Take real measurements on simulated system
- At work: Take real measurements on a real system
- Analogy:
 - In a class on regression, SL, NN, etc. you use sample data sets.
 - In (this) class on experimentation you'll use simulators.

Measure **Record business metric values**

Log values in production, post-process into BM

	Business metric	Values logged	Post process
Social media	Time spent per user per day	user id, date, time spent in a session	sum over sessions, avg. over users & dates
Credit card	P{fraud}	count of transactions, count of fraudulent	[num fraudulent] / [num transactions]
Trading strategy	PnL	trade prices and quantites	sum over returns on dollars held

Measure Variation

trade to trade, etc.

Measured value varies from user to user, date to date, session to session,

Analyze **Compare measurements**

- Measure business metric once for A and once for B
- Sometimes measure BM(A)>BM(B), sometimes BM(B)>BM(A)
 - ==> unreliable decisions

Measure Replication reduces variation

- Replicate: Take multiple measurements and average them
- Measurements: $x_i \sim X$, i = 1...N
- Average: $\mu = \sum_i x_i / N \blacktriangleleft$
- Replication reduces variation: $VAR(\mu) \leq VAR(X)$

Estimate the expectation of BM

Measure Standard error

- sample variance: $VAR(X) = \sum_{i} (x_i \sum_{i} (x_i))$ estimate expectation: \bar{x} by μ , $\dot{\bar{x}} = \mu$ define: $\sigma^2 = VAR(X)$
- No "sample variance" of μ b/c we only have a single μ value
- Instead, estimate (Asn1,q2) $VAR(\mu)$ by $VA\hat{R}(\mu) = VAR(x)/N$
- Define standard error:

$$SE = \sqrt{VAR(\mu)}, \quad \hat{SE} = \sigma/\sqrt{N}$$

$$(-\bar{x})^2/N$$

Measure II **Standard error**

 $\hat{SE} = \sigma / \sqrt{N}$

larger N == > smaller SE

Measure II **Standard error**

- You can't control the variation in an individual measurement You can control the variation in an aggregate measurement.
- Setting N sets the level of variation, SE, in the aggregate measurement.
- precision ~ 1/SE

Analyze II **Compare aggregate measurements**

- individual measurement: $x_i N=1$
- aggregate measurement: μ , N>1 ==> more reliable decisions

Design **Minimize experimentation costs**

- Tradeoff:
 - Larger N gives lower SE \bullet
 - Smaller N gives lower experimentation costs
- A/B test design optimizes N
 - Smallest N s.t. SE is "small enough"
 - ("small enough" discussed next lecture)

Measure III Bias

- Example, credit card fraud detection system, BM = P{fraud}
 - version A: old ML model
 - version B: new ML model
- A/B test: Collect large N of BM(A), BM(B)
- Configure to run A in US and B in Europe
- BM(B) < BM(A) by a lot!

Measure III Confounder bias

- Europe has EMV chip-card law.
- If you ran A in US and A in Europe, BM(A, Europe) < BM(A, US)
- So is B better than A, or is it just that Europe is better than US?
- Country (US/Europe) is a confounder
- Could fix by running A,B in both US and Europe.
- But what about the other confounders?

Do (could) we even know what they are?

Measure III Randomization removes confounder bias

- Randomization:
 - Flip a coin every time a transaction enters the system.
 - Heads, use A
 - Tails, use B
- Randomization makes measurements accurate, i.e. unbiased
- Run for all transactions (US, Europe, etc.)

Don't need to know what the confounders are!

A/B Testing Summary

- Replication makes a measurement precise
- Randomization makes a measurement accurate
- A/B test design minimizes the experimentation cost for a measurement of a given precision
- An analogy:

- Variation : precision : replication
- :: Bias : accuracy : randomization